[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT OF EMORY UNIVERSITY]

A Study of Organic Parachors. VIII. A Supplementary Series of Tertiary Chlorides¹

By Katherine O. Smart and Osborne R. Quayle

The parachor values for a series of tertiary chlorides² have been previously reported from this Laboratory and values for the CH₂ group in various positions have been suggested by which the parachors of other tertiary chlorides may be calculated. Nine additional supplementary tertiary chlorides have been prepared and their refractive indices, densities, surface tensions, and parachors have been determined. The chlorides were prepared from highly purified tertiary alcohols³ according to the method suggested by Whitmore and Williams.⁴ Purification by distillation is prevented by decomposition. Refractive indices⁵ were determined at 20, 25 and 35°. Densities

TABLE I

PHYSICAL PROPERTIES DETERMINED FOR NINE TERTIARY CHIORIDES

Chloromethane	Т	# 20D	Т	D	γ	P exp.
Methylethyl-	20	1.4317	25	0.8722	23.38	382.6
butyl	25	1.4293	45	.8552	23.49	382.8
	3 5	1.4249	55	.8466	22.50	382.5
Methylpropyl-	20	1.4360	25	.8719	26.00	421.3
butyl	25	1.4338	45	.8550	24.02	421.3
	35	1.4296	55	.8467	23.04	421.3
Methylbutyl-	20	1.4383	25	.8678	26.26	461.0
butyl	25	1.4363	45	.8519	24.40	461.1
	35	1.4321	55	.8440	23.49	461.0
Methylmethyl-	20	1.4263	25	. 855 2	24.54	386.8
amyl	25	1.4240	45	.8379	22.55	386.8
	35	1.4193	55	. 8293	21.69	386.8
Methylethyl-	20	1.4351	25	.8702	26.03	422.3
amyl	25	1.4330	45	.8534	24.14	422 .6
	35	1.4286	55	.8452	23.15	422.2
Methylpropyl-	20	1.4389	25	.8698	26.54	461.2
amyl	25	1.4369	45	.8537	24.66	461.3
	35	1.4327	55	.8457	23.70	461.1
Ethylbutyl-	20	1.4464	25	.8721	27.19	537.2
amyl	25	1.4442	45	. 8568	25.48	537.0
	35	1.4400	55	. 8491	24.56	537.0
Propylbutyl-	2 0	1.4450	25	. 8583	27.02	580.9
amyl°	25	1.4428	45	.8432	25.16	581.1
	35	1.4387	55	. 8356	24.26	581.1
Butylbutyl-	2 0	1.4490	25	.8675	27.48	613.7
amyl	25	1.4468	45	.8525	25.50	613.6
	35	1.4428	55	. 8450	24.58	613.4

• Sample discolored after long standing; less pure than other chlorides.

and surface tensions were determined at 25, 45 and 55° and parachors were calculated for the same temperatures. $P = M\gamma^{1/4}(D-d)$. The data obtained are given in Table I and the variation of refractive indices, densities, surface tensions, and parachors with temperature are shown in Figs. 1, 2, 3 and 4, respectively. Surface tensions were determined by the maximum bubble pressure method using a bubbler previously described.⁶

In Table II the experimental parachor values are compared with the values predicted by the position table previously reperted² and with the values calculated using the earlier constants of Mumford and Phillips.⁷ Mumford and Phillips⁷ first introduced a strain constant for tertiary branching but did not consider this to vary with the length of the chains involved. The per cent. deviation of the predicted value from the observed reaches 0.5 and 0.6 for the most complex chlorides measured; the average deviation is 0.2. The minimum deviation using the older values is 0.9% and the average is 1.9%.

TABLE II

COMPARISON OF EXPERIMENTAL AND CALCULATED PARA-CHOR AT 25°

Chloro- methane	Ехр.	Predicted	% Dev.	M.& P.	% Dev.
MEB	382.6	381.8	-0.2	390.4	+ 2.Ò
MPB	421.3	420.8	1	430.4	2.1
MBB	461.0	461.1	+ .02	470.4	2.0
MMA	385.8	386.0	2	390.4	0.9
MEA	422.3	422:5	+ .02	430.4	1.9
MPA	461.2	461.5	+ .07	470.4	1.9
EBA	537.2	537.5	+ .03	550.4	2.5
PBA	580.9	577.4	6	590.4	1.6
BBA	613.7	617.4	+ .5	630.4	2.6
	Alg	ebraic sum	-0.5		+17.5
		Average	.2		1.9

From the newly reported parachors, excluding the value for propylbutylamylchloromethane, several additional position values for the CH₂ increment in tertiary chlorides may be calculated. These together with those previously reported² make possible the construction of a chart, Table III, from which the parachor for any tertiary chloride may be calculated by addition; assuming that the structure

$$H \cdots CH_{2}$$

 $H \cdots CH_{2}$
 $H \cdots CH_{2}$
 $H \cdots CH_{2}$

The authors wish to express their appreciation to Professor E.
 Emmet Reid, research consultant to the department, for his continued interest and suggestions in connection with this investigation.
 O. R. Quayle, K. Owen and E. M. Beavers, THIS JOURNAL, 61,

^{3107 (1939).}

⁽³⁾ Prepared by Harry M. Stubbs of this Laboratory.

⁽⁴⁾ Whitmore and Williams, TRIS JOURNAL, 55, 406 (1933).

⁽⁵⁾ Refractive indices by Harry M. Stubbs, this Laboratory.

 ⁽⁶⁾ O. R. Quayle and K. O. Smart, THIS JOURNAL, 66, 937 (1944).
 (7) S. A. Mumford and J. W. C. Phillips, J. Chem. Soc., 2112 (1929).

Fig. 1.--Refractive indices of tertiary chlorides.

		TABL	e III				
POSITION VA	ALUES OF	CH ₂ I	N PA	RACH	ORS C	F TER	TIARY
		CHLO	RIDES	5			
Longest alkyl group	6 H···CH₂	-CH	4 CH1	3 -CH- 39.2	2 -CH 37.5	CHI	
	н…сн⊨	-CH1(CH:	CH	-CH3	Сн	CCl + 3H
Shortest alkyl group	H···CH:	-CH3(CH1	CH:	-CH: 35.7	CH1	229.4
CH: groups fu considered as 4	rther remov 40.	ed from	the	chlorin	ne than	shown 1	nay be

For example, the parachor of methylethylamylchloromethane would be calculated as follows

t-butyl chloride	229.4	
amyl group		
1st CH ₂ included in <i>t</i> -butyl linkage		
$2nd CH_2$	37.5	
3rd CH ₂	39.2	
4th CH ₂	38.6	
5th CH ₂	40.2	
ethyl group		
1st CH ₂ included in t-butyl linkage		
2nd CH ₂	36.2	
methyl group, included in <i>t</i> -butyl linkage		
Calculated parachor	421 .1	

Similar position values for tertiary alcohols have been reported.⁸ When the CH_2 position values

Fig. 3.-Surface tensions of tertiary chlorides.

for the alcohols are used to calculate the chlorides deviations of 0.5% or less are obtained with one exception, propylbutylamylchloromethane. A few values for branched chain hydrocarbons have been reported.⁹ Using the same position values deviations of the same magnitude are indicated. It is suggested that further measurements may permit the construction of a CH₂ position table for tertiary structures not limited to any one type of compounds.

(9) O. R. Quayle, R. A. Day and George Brown, THIS JOURNAL, 66, 938 (1944).

Summary

1. The refractive indices, densities, surface tensions and parachors for nine supplementary tertiary chlorides have been reported, at three temperatures.

2. The predicted and experimental values of the parachors have been shown to be in close agreement.

3. A table has been constructed for use in calculating the parachor of any tertiary chloride having normal alkyl groups.

Emory University, Georgia

RECEIVED SEPTEMBER 22, 1944

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, COLUMBIA UNIVERSITY]

The Acidity of Buffered and Unbuffered Sulfuric Acid Solutions in Nitromethane¹

By Louis C. Smith² and Louis P. Hammett²

Studies of the behavior of electrolytes in nitromethane solution thus far have been largely restricted to conductivity measurements. Because of its relatively high dielectric constant (37), it is to be expected that nitromethane should favor the dissociation of dissolved salts. The recent conductivity studies of Wright, Murray-Rust and Hartley⁸ and of Walden and Birr⁴ demonstrate that this is not the case, and do in fact indicate that many salts are associated in this solvent even at very great dilutions.

ent even at very great dilutions. According to the calculations of Walden and Birr, nitromethane shows relatively little tendency to solvate ions, particularly cations, and only the larger ions studied in the above investigations were found to approach ideal electrolytes in their behavior. Wright, Murray-Rust and Hartley found that the addition of 0.1% of water resulted in a very great increase in the conductivity of those electrolytes which deviated most greatly, while tetraethylammonium salts, which were normal in their behavior, were relatively unaffected by added water. This indicates that the effect of the water was to solvate the ions, thus decreasing the degree of association.

Nitromethane is a very weak base, as is shown by the work of Hantzsch⁵ and of Wright, Murray-Rust and Hartley.³ Hantzsch found by cryoscopic measurements that nitromethane was soluble but not ionized in absolute sulfuric acid. The conductivity measurements of Wright, Murray-Rust and Hartley showed that 0.02–0.05 molar solutions of sulfuric, thiocyanic, benzenesulfonic and nitric acids have an equivalent conductivity of 1–5 units, while hydrochloric acid had

(1) Dissertation submitted by Louis Charles Smith in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Pure Science, Columbia University.

(4) Walden and Birr, Z. physik. Chem., A163, 263, 321 (1932).

no effect at all on the conductivity of nitromethane. Perchloric acid, on the other hand, was found to have an equivalent conductivity of about 70 units, indicating that this is a relatively strong acid in nitromethane.

Because of its low basicity, nitromethane seemed well suited for making acidity measurements on strong acids, and the present work was undertaken for that purpose. The measurements were made colorimetrically, using the indicators of Hammett and Deyrup.⁶

The distribution of some of the indicators between nitromethane and water and benzene and water was also measured, and the results are given.

Apparatus

A Klett-Beaver⁷ colorimeter was used. The scales, readable to 0.1 mm., were calibrated and found to have no error exceeding 0.2 mm. One of the conventional sets of cups and plungers was removed and replaced with a closed cup, which was used for the test solutions. This cup consisted of a glass cylinder closed at one end with an optically plane glass surface, and fitted at the other end with a standard taper ground glass joint. The inner member of this joint formed the plunger, and this **a**lso was closed by an optically plane surface. The distance between the two surfaces was measured both directly against the colorimeter scale, and by placing a dye solution in both the open and closed cups and comparing in the colorimeter. The distance was found by both methods to be 50 mm. well within the limits of experimental error.

The standard solutions were placed in the open cup. Although nitromethane evaporates quite rapidly, no drift was observed in the readings, indicating that the rate of evaporation of solvent from the open cup was not large enough to affect the results. Beer's law was shown to hold for the indicators in nitromethane solution at the concentrations used.

Weights and volumetric ware were calibrated wherever necessary. All volumetric ware used was cleaned and dried out overnight at 110° and allowed to cool while being flushed out with a stream of dry air. After cooling to room temperature, flasks were stoppered until used.

⁽²⁾ Present address: 4800 Forbes St., Pittsburgh, Pa.

⁽³⁾ Wright, Murray-Rust and Hartley, J. Chem. Soc., 199 (1931).

⁽⁵⁾ Hantzsch, ibid., 65, 41 (1908).

⁽⁶⁾ Hammett and Deyrup, THIS JOURNAL, 54, 2721 (1932).

⁽⁷⁾ The Klett Manufacturing Co., New York; J. J. Beaver. J. Optical Soc. Am., 18, 41 (1929).